Cho a, b, c là ba số thực thỏa mãn điều kiện \({a^3} > 36\) và \(abc = 1\)
Xét tam thức bậc hai \(f(x) = {x^2} - {\rm{a}}x - 3ac + \dfrac{{{a^2}}}{3}\).
LG a
Chứng minh rằng \(f(x) > 0,\forall x\);
Phương pháp giải:
Tính \(\Delta \) và chứng minh \(\Delta < 0\)
Lời giải chi tiết:
\(f(x)\) có
\(\Delta = {a^2} - 4( - 3bc + \dfrac{{{a^2}}}{3})\)\( = \dfrac{{ - {a^2}}}{3} + 12bc\)\( = \dfrac{{ - {a^2}}}{3} + \dfrac{{12abc}}{a}\)\( = \dfrac{{ - {a^2}}}{3} + \dfrac{{12}}{a}\)
\( = \dfrac{{36 - {a^3}}}{{3a}} < 0\)(do giả thiết \({a^3} > 36\))
=>\(f(x) > 0,\forall x\).
LG b
Từ câu a) suy ra \(\dfrac{{{a^2}}}{3} + {b^2} + {c^2} > ab + bc + ca.\)
Phương pháp giải:
Biến đổi bất đẳng thức cần chứng minh tương đương với \(f(b+c)>0\) suy ra luôn đúng.
Lời giải chi tiết:
\(\dfrac{{{a^2}}}{3} + {b^2} + {c^2} > ab + bc + ca\)
\( \Leftrightarrow \dfrac{{{a^2}}}{3} + {(b + c)^2} - 2bc > bc + a(b + c)\)
\( \Leftrightarrow {(b + c)^2} - a(b + c) - 3bc + \dfrac{{{a^2}}}{3} > 0\)
\( \Leftrightarrow f(b + c) > 0\) đúng vì \(f(x) > 0,\forall x.\)
dapandethi.vn