Đề bài

Giả sử hai hàm số \(y = f\left( x \right)\) và \(y = f\left( {x + {1 \over 2}} \right)\) đều liên tục trên đoạn [0; 1] và \(f\left( 0 \right) = f\left( 1 \right)\) Chứng minh rằng phương trình \(f\left( x \right) - f\left( {x + {1 \over 2}} \right) = 0\) luôn có nghiệm trong đoạn \(\left[ {0;{1 \over 2}} \right]\)

Phương pháp giải - Xem chi tiết

Hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\left( {a;b} \right)\). Nếu \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một số \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).

Lời giải chi tiết

Xét hàm số \(g\left( x \right) = f\left( x \right) - f\left( {x + {1 \over 2}} \right)\)

Ta có

\(\eqalign{
& g\left( 0 \right) = f\left( 0 \right) - f\left( {0 + {1 \over 2}} \right) \cr 
& = f\left( 0 \right) - f\left( {{1 \over 2}} \right) \cr 
& g\left( {{1 \over 2}} \right) = f\left( {{1 \over 2}} \right) - f\left( {{1 \over 2} + {1 \over 2}} \right) \cr 
& = f\left( {{1 \over 2}} \right) - f\left( 1 \right) \cr 
& = f\left( {{1 \over 2}} \right) - f\left( 0 \right) \cr} \)

(vì theo giả thiết \(f\left( 0 \right) = f\left( 1 \right)\)).

Do đó,

\(\eqalign{
& g\left( 0 \right)g\left( {{1 \over 2}} \right) \cr &= \left[ {f\left( 0 \right) - f\left( {{1 \over 2}} \right)} \right]\left[ {f\left( {{1 \over 2}} \right) - f\left( 0 \right)} \right] \cr 
& = - {\left[ {f\left( 0 \right) - f\left( {{1 \over 2}} \right)} \right]^2} \le 0. \cr}\)

- Nếu \(g\left( 0 \right)g\left( {{1 \over 2}} \right) = 0\) thì x = 0 hay \(x = {1 \over 2}\) là nghiệm của phương trình \(g\left( x \right) = 0\)

- Nếu \(g\left( 0 \right)g\left( {{1 \over 2}} \right) < 0\)   (1)

Vì \(y = f\left( x \right)\) và \(y = f\left( {x + {1 \over 2}} \right)\) đều liên tục trên đoạn [0; 1] nên hàm số \(y = g\left( x \right)\) cũng liên tục trên [0; 1] và do đó nó liên tục trên \(\left[ {0;{1 \over 2}} \right]\)    (2)

Từ (1) và (2) suy ra phương trình \(g\left( x \right) = 0\) có ít nhất một nghiệm trong khoảng \(\left( {0;\dfrac{1}{2}} \right)\)

Kết luận : Phương trình \(g\left( x \right) = 0\) hay \(f\left( x \right) - f\left( {x + {1 \over 2}} \right) = 0\) luôn có nghiệm trong đoạn \(\left[ {0;{1 \over 2}} \right]\).

 dapandethi.vn