Lựa chọn câu để xem lời giải nhanh hơn

Viết điều kiện của mỗi bất phương trình sau:

LG a

\(2x - 3 - \dfrac{1}{{x - 5}} < {x^2} - x;\)

Phương pháp giải:

Biểu thức \(\dfrac{1}{{P(x)}}\) xác định khi \(P(x) \ne 0\)

Biểu thức \(\sqrt {P(x)} \) xác định khi \(P(x) \ge 0\)

Lời giải chi tiết:

Điều kiện  \(x - 5 \ne 0\)\( \Leftrightarrow x \ne 5\)

LG b

\({x^3} \le 1;\)

Lời giải chi tiết:

Điều kiện là x tùy ý.

LG c

 \(\sqrt {{x^2} - x - 2}  < \dfrac{1}{2};\)

Lời giải chi tiết:

Điều kiện là \({x^2} - x - 2 \ge 0\)

\( \Leftrightarrow \left( {x + 1} \right)\left( {x - 2} \right) \ge 0\)

TH1: \(\left\{ \begin{array}{l}x + 1 \ge 0\\x - 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \ge 2\end{array} \right. \Leftrightarrow x \ge 2\)

TH2: \(\left\{ \begin{array}{l}x + 1 \le 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le  - 1\\x \le 2\end{array} \right. \Leftrightarrow x \le  - 1\)

Kết hợp hai TH ta được \(x \ge 2\) hoặc \(x \le  - 1\).

Vậy ĐK: \(\left[ \begin{array}{l}x \ge 2\\x \le  - 1\end{array} \right.\)

LG d

\(\sqrt[3]{{{x^4} + x - 1}} + {x^2} - 1 \ge 0.\)

Lời giải chi tiết:

Điều kiện là x tùy ý.

(Do biểu thức băn bậc ba luôn có nghĩa với mọi x làm cho biểu thức trong căn có nghĩa)

dapandethi.vn