Đề bài

Tìm giá trị của \(a\) để hai đường thẳng \(y = \left( {a - 1} \right)x + 2\) và \(y = \left( {3 - a} \right)x + 1\) song song với nhau.

Phương pháp giải - Xem chi tiết

Hai đường thẳng \(y = ax + b\) và \(y = a'x + b'\) song song với nhau khi và chỉ khi \(a = a'\) và \(b \ne b'\)

Lời giải chi tiết

Hai đường thẳng \(y = \left( {a - 1} \right)x + 2\) và \(y = \left( {3 - a} \right)x + 1\) có tung độ gốc khác nhau do vậy chúng song song với nhau khi và chỉ khi chúng có hệ số \(a\) bằng nhau.

Ta có: \(a - 1 = 3 - a \Leftrightarrow 2a = 4 \Leftrightarrow a = 2\)

Vậy với \(a = 2\) thì hai đường thẳng \(y = \left( {a - 1} \right)x + 2\) và \(y = \left( {3 - a} \right)x + 1\) song song với nhau.

dapandethi.vn