Đề bài

Trong các giá trị sau đây, giá trị nào là nghiệm của phương trình \(\left| {3x - 4} \right| = {x^2} + x - 7\) ?

A. \(x = 0\) và \(x =  - 2\)                                B. \(x = 0\)

C. \(x = 3\)                                                   D. \(x =  - 2\)

Phương pháp giải - Xem chi tiết

Bỏ dấu trị tuyệt đối, giải phương trình cơ bản

Lời giải chi tiết

Với \(x \ge \dfrac{4}{3}\) ta có:

\(3x - 4 = {x^2} + x - 7\) \( \Leftrightarrow {x^2} - 2x - 3=0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 3}\\{x =  - 1}\end{array}} \right.\)

Đối chiếu điều kiện ta thấy \(x = 3\) là một nghiệm

Với \(x < \dfrac{4}{3}\) ta có:

\( - 3x + 4 = {x^2} + x - 7\) \( \Leftrightarrow {x^2} + 4x - 11=0\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 2 + \sqrt {15} }\\{x =  - 2 - \sqrt {15} }\end{array}} \right.\)

Đối chiếu điều kiện cả 2 giá trị x đều không thỏa mãn.

Vậy pt có nghiệm duy nhất x=3.

Đáp án C.

Cách khác:

Với giá trị x = 0 thì vế trái của phương trình tương đương, còn vế phải âm nên phương án A và B đều bị loại.

Tương tự, với x = -2 thì vế trái dương, vế phải âm nên phương án D bị loại.

dapandethi.vn