Đề bài

Cho bất phương trình \(x + 2y \ge  - 4.\)

a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.

b) Miền nghiệm có chứa bao nhiêu điểm \(\left( {x;y} \right)\) với \(x,\,\,y\) là các số nguyên âm?

Phương pháp giải - Xem chi tiết

- Vẽ đường thẳng \(d:x + 2y = -4\) trên mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của bất phương trình \(x + 2y \ge  - 4.\)

- Xác định các điểm có \(x,\,\,y\) là các số nguyên âm

Lời giải chi tiết

a) Ta biểu diễn miền nghiệm của bất phương trình như sau:

Vẽ đường thẳng \(d:x + 2y = -4\) trên mặt phẳng tọa độ \(Oxy.\)

Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \(d\) và thay vào biểu thức \(x + 2y,\) ta được \(0 + 2.0 = 0 < 4.\)

=> O thuộc miền nghiệm

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng bờ \(d\) và chứa điểm \(O.\)

 

b) Các điểm \(\left( {x;y} \right)\) là: \(\left( { - 1; - 1} \right),\,\,\left( { - 2; - 1} \right).\)