Lựa chọn câu để xem lời giải nhanh hơn

Một hình chóp với tứ giác đều ngoại tiếp hình cầu bán kính a

LG a

Chứng minh rằng thể tích của hình chóp là

\(V = {{4{a^2}{x^2}} \over {3(x - 2a)}}.\)

Trong đó x là chiều cao của hình chóp.

Phương pháp giải:

Mặt phẳng đi qua đường cao SH của hình chóp và trung điểm M của một cạnh đáy cắt hình chóp theo tam giác cân SMN và cắt hình cầu theo tâm O bán kính a nội tiếp tam giác SMN.

Có thể tính thể tích hình chóp theo x và  \(\alpha  = \widehat {SNH}\).

Sau đó sử dụng đẳng thức  \(x = a + {\rm{OS}}\) để tìm hệ thức giữa a, x và \(\alpha \).

Lời giải chi tiết:

Mặt phẳng đi qua đường cao SH của hình chóp và trung điểm M của một cạnh đáy cắt hình chóp theo tam giác cân SMN và cắt hình cầu theo tâm O bán kính a nội tiếp tam giác SMN.

Ta có \(HN = x\cot \alpha ;MN = 2x\cot \alpha \).

Thể tích hình chóp là \(V = {1 \over 3}M{N^2}.SH = {4 \over 3}{x^3}{\cot ^2}\alpha \)

Ta tính \({\cot ^2}\alpha \) theo a và x.

Từ đẳng thức SH = OH + OS ta có \(x = a + {a \over {{\rm{cos }}\alpha }}\); do đó  \({\rm{cos }}\alpha  = {a \over {x - a}}\)

\({\sin ^2}\alpha  = 1 - c{\rm{o}}{{\rm{s}}^2}\alpha \)

\(= 1 - {{{a^2}} \over {{{\left( {x - a} \right)}^2}}} = {{{x^2} - 2ax} \over {{{\left( {x - a} \right)}^2}}}\)

\({\cot ^2}\alpha  = {{c{\rm{o}}{{\rm{s}}^2}\alpha } \over {{{\sin }^2}\alpha }} = {{{a^2}} \over {x{{\left( {x - 2a} \right)}^2}}}\)

Từ đó suy ra công thức cần chứng minh.

 

LG b

Với giá trị nào của x,hình chóp có thể tích là nhỏ nhất ?

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}V\left( x \right) = \frac{{4{a^2}{x^2}}}{{3\left( {x - 2a} \right)}}\\V'\left( x \right) = \frac{4}{3}.\frac{{2{a^2}x\left( {x - 2a} \right) - {a^2}{x^2}}}{{{{\left( {x - 2a} \right)}^2}}}\\ = \frac{4}{3}.\frac{{{a^2}{x^2} - 4{a^3}x}}{{{{\left( {x - 2a} \right)}^2}}}\\V'\left( x \right) = 0 \Leftrightarrow {a^2}{x^2} - 4{a^3}x = 0\\ \Leftrightarrow {a^2}x\left( {x - 4a} \right) = 0\\ \Leftrightarrow x = 4a\left( {do\,x > 2a} \right)\end{array}\)

Lập BBT suy ra hàm số \(V\left( x \right)\) đạt GTNN tại \(x = 4a\).

dapandethi.vn