Lựa chọn câu để xem lời giải nhanh hơn

Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau:

LG a

\(y = 2x - 1 + {1 \over x}\)

Lời giải chi tiết:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \left( {2x - 1 + \frac{1}{x}} \right) = + \infty \\
\mathop {\lim }\limits_{x \to {0^ - }} y = - \infty
\end{array}\)

Đường thẳng x = 0 là tiệm cận đứng của đồ thị.

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 0\\
\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x - 1} \right)} \right] = 0
\end{array}\)

Đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị.

LG b

\(y = {{{x^2} + 2x} \over {x - 3}}\)

Lời giải chi tiết:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {3^ + }} y = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{{x^2} + 2x}}{{x - 3}} = + \infty \\
\mathop {\lim }\limits_{x \to {3^ - }} y = - \infty
\end{array}\)

Đường thẳng  x = 3 là tiệm cận đứng của đồ thị.

Ta có

\(\begin{array}{l}
y = \frac{{{x^2} + 2x}}{{x - 3}} = x + 5 + \frac{{15}}{{x - 3}}\\
\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 5} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{15}}{{x - 3}} = 0\\
\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 5} \right)} \right] = 0
\end{array}\)

Nên đường thẳng  y = x + 5 là tiệm cận xiên của đồ thị.

LG c

\(y = x - 3 + {1 \over {2{{(x - 1)}^2}}}\)

Lời giải chi tiết:

Vì \(\mathop {\lim }\limits_{x \to 1} y =  + \infty \) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị.

Vì \(y - (x - 3) = {1 \over {2{{(x - 1)}^2}}} \to 0\) khi \(x \to  + \infty \) và \(x \to  - \infty \)

nên đường thẳng y = x – 3 là tiệm cân xiên của đồ thị.

LG d

\(y = {{2{x^3} - {x^2}} \over {{x^2} + 1}}\)

Lời giải chi tiết:

\(\begin{array}{l}
y = \frac{{2{x^3} - {x^2}}}{{{x^2} + 1}} = 2x - 1 + \frac{{1 - 2x}}{{{x^2} + 1}}\\
\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{{x^2} + 1}} = 0\\
\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x - 1} \right)} \right] = 0
\end{array}\)

Nên đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị.

Vì hàm số xác định trên R nên đồ thị của nó không có tiệm cận đứng.

Loigiaihay.com