Đề bài

Nghiệm của phương trình \(\cos 2x \cos 4x=1\) thuộc đoạn \(\left[ { - \pi ; \pi} \right]\) là

A. \(-\dfrac{\pi}{2}\), \(0\) và \(\pi\)

B. \(0\), \(\dfrac{\pi}{2}\) và \(\pi\)

C. \(-\pi\), \(0\) và \(\pi\)

D. \(-\dfrac{\pi}{2}\), \(\dfrac{\pi}{2}\) và \(\pi\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức biến đổi tích thành tổng để thu gọn phương trình.

Lời giải chi tiết

Ta có: \(\cos 2x \cos 4x=1\)

\(\Leftrightarrow \dfrac{1}{2}[\cos(4x+2x)+\cos(4x-2x)]=1\)

\(\Leftrightarrow \dfrac{1}{2}(\cos 6x+\cos 2x)=1\)

\(\Leftrightarrow \cos 6x+\cos 2x=2\)

Vì \(-1\le\cos 6x\le1\) và \(-1\le\cos 2x\le1\)

\( \Rightarrow  - 2 \le \cos 6x + \cos 2x \le 2\)

Nên phương trình xảy ra khi dấu "=" thứ hai trong bđt trên xảy ra

\(\Leftrightarrow \left\{ \begin{array}{l} \cos 6x=1\\\cos 2x=1\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l} 6x=k2\pi ,k\in\mathbb{Z}\\2x=k2\pi  ,k\in\mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l} x=k\dfrac{\pi}{3} ,k\in\mathbb{Z}\\x=k\pi  ,k\in\mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow x=k\pi  ,k\in\mathbb{Z}\)

Với \(k=-1\), \(k=0\) và \(k=1\) phương trình có 3 nghiệm \(\pi\), \(0\) và \(\pi\) thuộc đoạn \([-\pi;\pi]\)

Đáp án: C.

Cách trắc nghiệm:

Xét các phương án.

Với x = ±π/2 thì cos2x – 1 = 0, cos4x = 1 nên các giá trị ±π/2 không phải là nghiệm của phương trình. Do đó các phương án A, B, D đều bị loại.

 dapandethi.vn