Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \(3x – 2y = 5\)

LG a

Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ có nghiệm duy nhất

Phương pháp giải:

Sử dụng:

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

Ta có \(3x - 2y = 5 \Leftrightarrow y = \displaystyle{3 \over 2}x - {5 \over 2}\)

Ta cần thêm một phương trình bậc nhất hai ẩn để được một hệ có nghiệm duy nhất. Do đó ta phải thêm đường thẳng có hệ số góc khác \(\displaystyle{3 \over 2}\).

Chẳng hạn ta thêm đường thẳng 

\(y =\displaystyle {2 \over 3}x + {1 \over 3} \Leftrightarrow 2x - 3y =  - 1\)

Khi đó ta có hệ phương trình

\(\left\{ {\matrix{
{3x - 2y = 5} \cr 
{2x - 3y = - 1} \cr} } \right.\)

 và hệ này có nghiệm duy nhất.

LG b

Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ vô nghiệm

Phương pháp giải:

Sử dụng:

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

Ta cần thêm một phương trình bậc nhất hai ẩn để được môt hệ vô nghiệm. Do đó ta phải thêm đường thẳng có hệ số góc bằng \(\displaystyle{3 \over 2}\) và tung độ gốc khác \(\displaystyle - {5 \over 2}\).

Chẳng hạn ta thêm đường thẳng

 \(y = \displaystyle{3 \over 2}x - {1 \over 2} \Leftrightarrow 3x - 2y = 1\)

Khi đó ta có hệ phương trình

\(\left\{ {\matrix{
{3x - 2y = 5} \cr 
{3x - 2y = 1} \cr} } \right.\)    

và hệ này vô nghiệm.

LG c

Hãy cho thêm một phương trình bậc nhất hai ẩn để được một hệ có vô số nghiệm

Phương pháp giải:

Sử dụng:

- Với hai đường thẳng \((d):y=ax+b \) và  \((d'): y=a'x+b' \) trong đó \(a\) và \(a'\) khác \(0\). Ta so sánh các hệ số \(a,\ a'\); \(b,\ b'\).

+) Nếu \(a \ne a'\) thì \(d\) cắt \(d' \Rightarrow \)  hệ đã cho có một nghiệm duy nhất.

+) Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ đã cho vô nghiệm.

+) Nếu \(a=a',\ b=b'\) thì \(d\) trùng với \(d' \Rightarrow \) hệ đã cho có vô số nghiệm. 

Lời giải chi tiết:

Ta cần thêm một phương trình bậc nhất hai ẩn để được một hệ có vô số nghiệm. Do đó ta phải thêm đường thẳng có hệ số góc bằng \(\displaystyle{3 \over 2}\) và tung độ gốc bằng \( \displaystyle - {5 \over 2}.\)

Chẳng hạn ta thêm đường thẳng

\(y = \displaystyle{3 \over 2}x - {5 \over 2}\) \( \Leftrightarrow \) \(6x - 4y = 10\)

Khi đó ta có hệ phương trình

\(\left\{ {\matrix{
{3x - 2y = 5} \cr 
{6x - 4y = 10} \cr} } \right.\)      

và hệ này có vô số nghiệm.

dapandethi.vn